Using Machine Learning Algorithms for Automatic Cyber Bullying Detection in Arabic Social Media
Authors
Abstract:
Social media allows people interact to express their thoughts or feelings about different subjects. However, some of users may write offensive twits to other via social media which known as cyber bullying. Successful prevention depends on automatically detecting malicious messages. Automatic detection of bullying in the text of social media by analyzing the text "twits" via one of the machine learning algorithms. In this paper, we have reviewed algorithms for automatic cyberbullying detection in Arabic of machine learning, and after comparing the highest accuracy of these classifications we will propose the techniques Ridge Regression (RR) and Logistic Regression (LR), which achieved the highest accuracy between the various techniques applied in the automatic cyberbullying detection in English and between the techniques that was used in the sentiment analysis in Arabic text, The purpose of this work is applying these techniques for detecting cyberbullying in Arabic.
similar resources
Using Machine Learning Algorithms for Author Profiling In Social Media
In this paper we present our approach of solving the PAN 2016 Author Profiling Task. It involves classifying users’ gender and age using social media posts. We used SVM classifiers and neural networks on TF-IDF and verbosity features. Results showed that SVM classifiers are better for English datasets and neural networks perform better for Dutch and Spanish datasets.
full textLearning from Bullying Traces in Social Media
We introduce the social study of bullying to the NLP community. Bullying, in both physical and cyber worlds (the latter known as cyberbullying), has been recognized as a serious national health issue among adolescents. However, previous social studies of bullying are handicapped by data scarcity, while the few computational studies narrowly restrict themselves to cyberbullying which accounts fo...
full textSupervised Feature Selection Based Extreme Learning Machine (sfs-elm) Classifier for Cyber Bullying Detection in Twitter
Cyber bullying detection that are prevailing commonly in social networks like Twitter is one of the focussed research area. Text mining and detecting cyber bullying has several research challenges and lot of research scope to work with. This research work makes use of supervised feature selection by ranking method in order to choose the features from the tweets. After that extreme learning mach...
full textTrust Classification in Social Networks Using Combined Machine Learning Algorithms and Fuzzy Logic
Social networks have become the main infrastructure of today’s daily activities of people during the last decade. In these networks, users interact with each other, share their interests on resources and present their opinions about these resources or spread their information. Since each user has a limited knowledge of other users and most of them are anonymous, the trust factor plays an import...
full textArabic Event Detection in Social Media
Event detection is a concept that is crucial to the assurance of public safety surrounding real-world events. Decision makers use information from a range of terrestrial and online sources to help inform decisions that enable them to develop policies and react appropriately to events as they unfold. One such source of online information is social media. Twitter, as a form of social media, is a ...
full textMachine learning algorithms for time series in financial markets
This research is related to the usefulness of different machine learning methods in forecasting time series on financial markets. The main issue in this field is that economic managers and scientific society are still longing for more accurate forecasting algorithms. Fulfilling this request leads to an increase in forecasting quality and, therefore, more profitability and efficiency. In this pa...
full textMy Resources
Journal title
volume 12 issue 2
pages 123- 130
publication date 2020-04-24
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023